On the characteristic polynomial of the adjacency matrix of the subdivision graph of a graph
نویسنده
چکیده
The characteristic polynomial of the adjacency matrix of a graph is noted in connection with a quantity characterizing the topological nature of structural isomers saturated hydrocarbons [S], a set of numbers that are the same for all graphs isomorphic to the graph, and others [l]. Many properties of the characteristic polynomials of the adjacency matrices of a graph and its line graph [3] have so far been investigated by some researchers (see [ll, PI and PI)= In this note, the characteristic polynomial of the adjacency matrix of the subdivision graph [3] of a graph G is related to the characteristic polynomials of the adjacency matrices of G and its line graph. Let G be a graph with neither self-loops nor parallel edges, and let n and m be the numbers of vertices and edges of G, respectively. Let D be the incidence matrix whose ith row and jth column element Dij (i = 1,2, . . . , n ; i = 1,2, . . . , m) is 1 if the corresponding edge i is incident at the corresponding vertex i in G and 0 otherwise, and let D’ be the transpose of D. Moreover, let V be the diagonal matrix of order n whose ith diagonal element Vii is the number of all edges incident at the corresponding vertex i of G, and let
منابع مشابه
SIGNED GENERALIZED PETERSEN GRAPH AND ITS CHARACTERISTIC POLYNOMIAL
Let G^s be a signed graph, where G = (V;E) is the underlying simple graph and s : E(G) to {+, -} is the sign function on E(G). In this paper, we obtain k-th signed spectral moment and k-th signed Laplacian spectral moment of Gs together with coefficients of their signed characteristic polynomial and signed Laplacian characteristic polynomial are calculated.
متن کاملRelationship between Coefficients of Characteristic Polynomial and Matching Polynomial of Regular Graphs and its Applications
ABSTRACT. Suppose G is a graph, A(G) its adjacency matrix and f(G, x)=x^n+a_(n-1)x^(n-1)+... is the characteristic polynomial of G. The matching polynomial of G is defined as M(G, x) = x^n-m(G,1)x^(n-2) + ... where m(G,k) is the number of k-matchings in G. In this paper, we determine the relationship between 2k-th coefficient of characteristic polynomial, a_(2k), and k-th coefficient of matchin...
متن کاملMore Equienergetic Signed Graphs
The energy of signed graph is the sum of the absolute values of the eigenvalues of its adjacency matrix. Two signed graphs are said to be equienergetic if they have same energy. In the literature the construction of equienergetic signed graphs are reported. In this paper we obtain the characteristic polynomial and energy of the join of two signed graphs and thereby we give another construction ...
متن کاملStudy of fullerenes by their algebraic properties
The eigenvalues of a graph is the root of its characteristic polynomial. A fullerene F is a 3- connected graphs with entirely 12 pentagonal faces and n/2 -10 hexagonal faces, where n is the number of vertices of F. In this paper we investigate the eigenvalues of a class of fullerene graphs.
متن کاملA new result on chromaticity of K4-homoemorphs with girth 9
For a graph $G$, let $P(G,lambda)$ denote the chromatic polynomial of $G$. Two graphs $G$ and $H$ are chromatically equivalent if they share the same chromatic polynomial. A graph $G$ is chromatically unique if any graph chromatically equivalent to $G$ is isomorphic to $G$. A $K_4$-homeomorph is a subdivision of the complete graph $K_4$. In this paper, we determine a family of chromatically uni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 2 شماره
صفحات -
تاریخ انتشار 1980